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Oscillatory flow in curved pipes. Part 2. 
The fully developed case 

By T. MULLIN? A N D  C .  A. GREATED 
Department of Physics, University of Edinburgh 

(Received 4 April 1979) 

A theoretical and experimental investigation of oscillatory flow in curved pipes is 
presented. The equations for fully developed laminar flow are found to depend on an 
amplitude parameter G and a frequency parameter a. Initially the Navier-Stokes 
equations are expanded in terms of G and the resulting linearized equations are solved 
numerically using finite Hankel integral transforms. A further expansion is used for 
the case a+ 0 and closed-form solutions are presented. 

Laser-Doppler anemometry has been used to obtain velocity information in 
oscillatory air flow in small-diameter curved glass tubes. Using this technique, low- 
Reynolds-number experiments were carried out and comparison between theory and 
experiments is presented. 

For a < 1 the velocity distributions found are essentially those for steady flow, 
while for a 2 11.0 the results are not at variance with earlier work. It is for the trans- 
ition stage between these two regimes that unexpected behaviour is recorded, but a 
satisfactory explanation is found in terms of general trends within the flow. 

I. Introduction 
There has been a considerable amount of research into steady flow in curved pipes 

but it is only recently that the problem of unsteady flow has been considered. The first 
theoretical study of oscillatory flow in a curved pipe was carried out by Lyne (1970) 
who used boundary-layer approximations to solve the linearized Navier-Stokes 
equations for large values of the frequency parameter a = a(w/v)d.  His solutions are 
valid for the cases R, < I and R, I ,  where R, = K 2 a / ( R v d )  is the Reynolds number 
of the steady secondary-flow component. Here K is the amplitude of the applied 
pressure gradient, a the radius of the pipe, R the radius of curvature of the bend, v is 
the kinematic viscosity and w the radial frequency of the flow. 

The main result of Lyne’swork was to show the existence of a four-vortex secondary- 
flow system. The secondary flow in the central core of the tube was found to be steady 
and directed from the outside of the curve to the inside, i.e. in the opposite sense to 
that for steady flow. Around the walls of the pipe the secondary vortex was directed 
in the same sense as that for steady flow. Lyne postulated that for a < 12-9 the normal 
two-vortex system would persist as found in the steady-flow work of Dean (1927, 
1928). 

Lyne’s findings were verified experimentally by Bertelsen (1975) and Munsen 
(1975, 1976). They investigated the nature of the steady secondary-flow component 
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using flow-visualization techniques. There is good agreement between their experi- 
mentally determined a value for the transition of the two-vortex to the four-vortex 
system and the theoretical value given by Lyne. 

However, Bertelsen found that there is a distortion of the outer vortices which is 
not predicted by the theory of Lyne. His experiments were carried out in a U-tube 
of curvature 0-1 and since the theory is strictly valid only for very small curvature 
he has considered the effects of finite curvature on the equations of Lyne, in Bertelsen 
(1974). 

The agreement between theory and experiment is improved but the analysis 
requires that the axial velocity distribution is such that its maximum occurs towards 
the inside of the curve at  all phase positions in the pressure cycle. No comment is 
made upon this by Bertelsen but it is clear that a completely different flow situation 
exists in the high-frequency limit to that found for steady flow. 

Another attempt a t  solving the Navier-Stokes equations for this problem was 
made by Zalosh & Nelson (1972). Their analysis consisted of linearizing the Navier- 
Stokes equations by expanding them in powers of the curvature, which is assumed 
small, and solving the resulting equations using numerical techniques. The results 
ought to be valid for all values of a but restricted to the limit R, < 1. Further, closed- 
form solutions were obtained in the limits a+ 0 and a+m. 

Zalosh & Nelson's work relies heavily on the thesis of Zalosh (1970) and unfortun- 
ately within the thesis there is a major error in the derivation of the third-momentum 
equation. This gives a completely wrong axial velocity distribution for the curved 
pipe. Further, there is an error in the use of the integral transform for the first-order 
secondary-flow equation which gives too low an a value for the transition of the two- 
vortex to the four-vortex system. The paper presented by Zalosh & Nelson contains 
the correct equations but the results which are presented therein appear to be in- 
consistent with these. 

A more general approach to the problem is presented by Blennerhassett ( 1  976) and 
Smith (1975) who considered the case of an oscillatory pressure gradient superimposed 
on a mean. This introduces a third parameter into the small-curvature equations, viz. 
the steady-flow Dean number. The interplay between the oscillatory part and the 
mean part of the flow was found to be complicated with the two types of secondary- 
flow generation found. There was inward centrifuging generated by the boundary 
conditions of the oscillatory flow and outward centrifuging caused by centrifugal 
effects of the steady flow. In  t'he oscillatory limit, however, agreement was found with 
Lyne for large values of a and with Dean in the quasi-steady limit. Also Blennerhassett 
found the centre of axial-velocity distribution for the oscillatory component to be dis- 
placed towards theinside of the curve, and attributed this to the reverse secondary flow. 

In this study we are considering the case of viscous, incompressible, laminar flow 
in a torus under the action of a pressure gradient K cos wt. The equations are linearized 
by expanding in terms of an amplitude parameter G and the resulting equations are 
solved using finite Hankel integral transforms. The solutions are valid for all values 
of the frequency parameter a with the restriction R, e.1. Closed-form solutions are 
obtained in the qoasi-steady limit by a further expansion in a2 to aid physical insight 
into the problem. 

Finally, theory and experiment are compared and it is shown that many of the 
main flow features are present in the first-order theoretical approximations. 
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FIGURE 1. Co-ordinate system. 

2. The equations of motion 
The system of co-ordinates used is shown in figure 1.  A circular pipe of radius a is 

coiled in a toroid around an axis 02 such that a section of the pipe is specified by an 
axial plane through the pipe which makes an angle 8 to the fixed axial plane. The 
radius of the circle in which the pipe is coiled is given by R and this will be used to 
specify the non-dimensional radius of curvature ( a / R ) ,  which will be assumed small 
in this analysis. 

Any point Q within a plane of the pipe will be specified by the orthogonal CO- 
ordinates (r', +, 6) and the components of velocity corresponding to these co-ordinates 
will be given by U' ,  V' and W' respectively. Fully developed flow will be assumed to 
exist in the plane of interest and thus U' ,  V' and W' will be independent of 8, but P 
the pressure will not be. 

The small-curvature unsteady-flow equations may be obtained directly from the 
steady-flow equations of Dean (1  928) : 

aU' aU' V'aU'  V 2  W'2sin# -+U'-+ 
at ar' r' a+ r' R 

av' ,avl Taut u'v' W ' ~ C O S #  -+up+--+-- 
at ar' r' a+ r' R 

(2.1) 
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Here 

v is the kinematic viscosity of the fluid and 1 its density. From 
tinuity (2.4), the stream function f (r', q5) can be introduced such 

the equation of con- 
that 

Also the pressure terms can be eliminated between equations (2.1) and (2.2) and the 
vorticity equation for flow in the cross-section obtained, such that 

A sinusoidal pressure gradient which has no mean part is imposed on the flow such that 

-$ &(:) = Kcoswt, 

where K is the amplitude of the applied pressure gradient and o is the angular 
frequency. 

Using the following non-dimensionalization a more convenient form of the equation 
is found: 

r' f W'W 
r = -  r = w t ,  'I!=-, w = - -  

a '  V K '  
Equation (2.6) becomes 

where Q 2  a2V'2* 

and equation (2.7) becomes 

(2.10) 

This equation can be seen to be controlled by two parameters, a non-dimensional 
frequency parameter 01 = a(w/v)g and an amplitude parameter G = 2K2a3/Rv2w2. 

If the pressure gradient amplitude is rewritten as W, o, where W, is the peak of the 
instantaneous mean flow, then G becomes equivalent to the Dean expansion para- 
meter. The relationship between W, and K becomes more complicated for increasing 
a but in the low-frequency limit the expansion scheme used is in fact equivalent to 
Dean's. 

The amplitude parameter has the alternative form 2a2R,. Since the expansion used 
is to be valid for all 01 this implies that it is only valid for R, < 1.  Thus since G is con- 
sidered small the equations are expanded in terms of G ,  and collecting terms of equal 
powers the following equations result. 
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The expansions 

and 

give 

w = W ~ + G W , + G ~ W ~ + . . .  

Y = W , + G 2 Y 2 +  ... 

(2.11) 

aw0 (2.12) 
a 

a7 ar 
a2 - ( V Y , )  - v4Y1 = wo COB 4 - , 

(2.13) 

3. Solution for arbitrary a 

can be written in the form 
The straight-pipe equation (2.11) was first solved by Sex1 (1  934) and its solution 

wo = Bcosr+(l--)sin?,  (3.1) 

where 

and 

bei a ber ar - ber a bei ar 
bei2 a + ber2 a 

bei a bei ar + ber a ber ar 
bei2 a + ber2 a 

B =  

A =  
9 

where ber, bei are the real and imaginary Kelvin’s functions. The right-hand side 
of equation (2.12) may now be evaluated and a solution is suggested of the form 

Y, = Y l o ( r ,  $) +Y12(r ,  4) eiR. (3.2) 

Substitution of this formulation of the secondary flow into (2.12) leads to 

V4Y10 = ~ ( ( l - A ) - - - B - ] c o s ~ ,  1 dA dB 
dr dr (3.3) 

2ia2V2Y12-V4Y,2 C O S ~ .  (3.4) 

Since the only variation with 4 on the right-hand side of these equations is via the 

(3.5) 

factor COB 4, separable solutions of the form 

Ylo = $C0(r) cos $, Y,, = &C2(r) cos 4, 
are sought with the boundary conditions 

The occurrence of the bi-harmonic and Laplacian operators on the left-hand side 



402 T. Mullin and C. A .  Greated 

of these equations suggest the finite Hankel integral transform may be appropriate 
to aid a solution. The form of the finite Hankel transform is given by Sneddon (1946) as 

(3.7) 

with the inversion formula 

where p is the order of the Bessel function and f;3. is the j th  eigenvalue of the equation 

JJtJ = 0. (3.9) 

The first-order Hankel transform involved in this equation cannot be evaluated 
analytically because of the terms involved on the right-hand side of the equation. 
The transformed solutions can be evaluat,ed using the Gaussian quadrature scheme 
of Stroud (1966). Details of the solutions may be found in Mullin (1978). 

Thus the stream function Y, may be obtained and is given by 

Yl = & cos #[co f c, cos 27 - Czy sin 271, (3.10) 

where C ,  and CZy are the real and imaginary parts of C, and these together with C, 
may be found from the relevant inversion formulae. 

The procedure is repeated for equation (2.13) and the resulting solution for the 
first-order axial-velocity perturbation together with the appropriate boundary 
condition is obtained as 

w1 = 4 sin #[Ill, cos 7 - D,, sin 7 + D, cos 37 - D,, sin 371. (3.11) 

Again D,,, D,,, D ,  and D,, were evaluated numerically using the appropriate 
inversion formulae. Because of the nature of the axial-velocity distribution found it 
was of interest to investigate the effects of this upon the secondary flow. Thus a 
solution to (2.14) was found using the Hankel transform technique, although the 
occurrence of the sin 2# factor required the second-order transform. The solution is 
given by 

Y, = & sin 25b[H,, + H,,, cos 27 - I€,,, sin 27 + H2- cos 47 - HZ3, sin 471, (3.12) 

where the functions Hz0, HZm,  H,,,, H24w and H244 are evaluated numerically. 
The use of the finite Hankel transform involves the evaluation of integrals con- 

taining products of Bessel functions and Kelvin functions. The Kelvin functions 
become large as a! increases and thus convergence of the integrals becomes difficult 
to achieve for large a. In practice, computing time becomes prohibitive for a 2 11, 
when up to 22 terms are required for convergence of the inversion series. In this 
regime it is therefore more appropriate to adopt the boundary-layer methods first 
proposed by Lyne (1970). 

4. Small ct approximation 
I n  order to gain some physical insight into the problem the case is now considered 

where both G and a are small. The approximate equation obtained by the expansion 
in terms of G is now expanded in termsof 012. This allows closed-form analytical solutions 
to be found. 
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The straight-pipe solution becomes 

The first term in the series shows that for very small frequencies the velocity profile 
is parabolic and in phase with the applied pressure gradient. The next term arises 
owing to the first-order effects of inertia in the central region of the flow. The final 
two terms in the series show that as a increases then for a fixed pressure gradient 
amplitude there will be a decrease in the axial velocity. A comparison between the 
exact solution and the approximate solution shows that this expansion breaks down 
rapidly for a 2 1-5. 

Using this approximate solution, closed-form expressions for the first-order second- 
ary-flow equations are obtained : 

Y, = a4{F0(r) cos27 + aZF(r) sin 27 + a4[F1(r) + F2(r) cos 271 + a6F3(r) sin 27 + O(a8)}  cos 4. 
(4-2) 

The function Fo(r) is equivalent to that found in the steady-flow solution of Dean 
and its time dependency is as one would expect intuitively. The functions Fo(r) - FJr )  
are shown in figure 2. They all have the same form except F2(r), which has a peak 
near the axis of the tube and reverses sign near the wall. This gives the first indication 
of the type of secondary flow found in the boundary-layer work of Lyne. 

A closed-form solution can now be found to the first-order axial-velocity per- 
turbation equation (2.13) : 

w1 = as sin $[F4(r) C O S ~  7 + a2F5(r) sin 7 cos2 7 + a4(F6(r) COST + F,(r) C O S ~  7 )  

+a~(F8(r)sin7+F,(r)sin7cos27)+O{as)]. (4.3) 

The function F4(r) is equivalent to  that solution found by Dean for the steady-flow 
case but now, owing to the time dependency, the perturbation will be very small 
over the periods 60"-120" and 240"-300" in the pressure cycle. Thus as a increases 
the higher-order terms may have appreciable effects within this range. 

The functions F4(r) - F,(r) are shown in figure 3. They are similar in form, except 
F8(r), which has its maximum towards the centre of the tube. Further, the function 
F,(r) indicates that  for larger values of a the perturbation may change sign at the 
0" phase position. 

5. Results and discussion 
I n  the quasi-steady limit the secondary-flow streamline patterns ought to be in 

agreement with the steady-flow results on McConalogue & Brivastava ( 1  968) and 
Collins & Dennis (1975). Both of these studies used the limit of Dean's work as their 
starting-point and it is of interest to see how the results for V!,,,, the maximum value 
of the secondary-flow stream function, compare for various Dean numbers. G = 9216 
is equivalent to the limiting value of Dean's expansion parameter, which was 576. 

The results presented in table 1 are for phase 0" using the Hankel transform solution. 
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FIQURE 2. Functions Fo(r) - P8(r) associated with small-a secondary- 
flow approximation plotted to show radial dependence. 

Thus reasonable agreement is obtained at the Dean limit, but the results presented 
here indicate that this is also the limit of this expansion. The secondary-flow stream- 
line pattern is shown in figure 4 in which the pattern is very similar to the one presented 
by McConalogue & Srivastava for the same value of G. 

The nature of the time dependency of the secondary flow in the central area of the 
tube was investigatedexperimentally and the results are shown in figure 5. The reference 
velocity used in the normalization was the peak radial velocity measured in the centre 
of the tube and the value of Q was 21.58. The secondary flow is directed outwards 
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FIGURE 3. Functions P4(r) - F,(r) associated with small-or axial-velocity 
perturbation approximation plotted to show radial dependence. 
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McConalogue & Srivastsva (1968) 9216 0.95 14607.14 1.36 
Collins & Dennis (1975) 9216 0.99 
Present 9216 0.968 14607.14 1.21 
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FIGURE 4. Secondary-flow streamlines for the case 01 = 1, B = 9216, 
@ = 0.1-0.9 and phase position 0'. 



Oscillatory flow in curved pipes. Part 2 407 

OUT IN 

I+I/ = 0.075 - 0.375 I+I/ = 0.05 - 0.35 

JI = 0.1 - 0.7 I+I/ = 0.025 - 0.15 

I+I/ = 0.01 25 - 0.075 

FIGURE 6.  Steady component of secondary flow with fixed G = 300. (a )  a = 2, $ = 0.075-0-375; 
( b )  a = 4, @ = 0.1-0-7. (c) a = 6, $ = 0.05-0.35; (d)  a = 8, $ = 0.025-0.15; ( e )  a = 10, $ = 
0.0125-0.0'75. 

from the centre of curvature and behaves as cos2 r in agreement with the quasi-steady 
approximation. 

It is of interest now to see how the steady secondary-flow streamline pattern varies 
with a for a fixed value of G .  This is shown in figure 6 ,  which demonstrates the gradual 
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OUT 

FIGURE 7. Secondary-flow streamlines for the case OL = 5, phase positions 0"-150" with G = 300. 
Phase positions: (a) 0"; ( b )  30"; (c) 60"; ( d )  90"; (e) 120"; (f) 150". 

development of a stagnation region in the centre of the tube with increasing a. Two 
additional vortices are finally produced in this central region which rotate in the 
opposite direction to the main wall vortices, and the four-vortex system found by 
Lyne appears. The a value at which this transition occurs is found to be approximately 
11.0, which is slightly lower than the value found by Lyne. This discrepancy occurs 
because the approximations presented in this study are only equivalent to the first- 
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FIGURE 8. Normalized secondary flow and velocity plots for the tube centre when a = 4.36. 

Experimental secondary flow measurements made at  D = 42.84. 

order approximation of Lyne (Mullin 1978). The next term in the series contains a 
correction for large a. 

Another feature of the steady-secondary-flow streamline patterns is the change in 
direction of the displacement of the centres of the vortices for increasing a. When 
a = 2 and 4 they are displaced towards the outside of the bend to produce patterns 
similar to those of McConalogue & Srivastava (1968). As a increases to 6 the centres 
move towards the inside of the bend and remain there a t  a = 10. This thickening of 
the vortex core on the inside of the curve was attributed to finite-curvature effects 
by Bertelsen (1975), but from these results it would appear to depend on G when 
a 2 6. 

The full time-dependent streamlines for a = 5 are shown in figure 7. The centres of 
the vortices remain displaced towards the inside of the bend until phase position 120". 
The stagnation region is present a t  the 60" and 90" phase positions and a t  the 120" 
and 150" positions the outward streaming becomes uniform in the centre of the tube, 
and is similar to that found in the quasi-steady region. Thus a t  this a value all the 
elements of the secondary-flow pattern appear in one cycle. The time dependency of 
the secondary flow was investigated experimentally near this a value and the results 
are shown in figure 8. Thus the secondary flow is directed outwards a t  a11 phase 
positions and remains in phase with the central axial velocity component. 

If now the a value is increased to 10 then the patterns shown in figure 9 are obtained. 
The stronger main vortices are slightly thicker towards the inside of the curve a t  all 
phase positions. The stagnation zone in the centre of the tube is prominent and, a t  33" 
phase, twin vortices rotating in the opposite direction to the main vortices appear. 
Even a t  phase position 80" where the strongest inner vortices occur, it is clear that 
they occupy only a small area of the centre of the tube. Thus the situation portrayed 
by the boundary-layer work of Lyne (1970) is only reached very gradually as 01 
increases. 
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FIGURE 9. Secondary-flow streamline patterns obtained when a = 10 and cf = 200. (a) Phase 
position 120", Y = 0-005-0.021; (b)  Phase position 33", Y = 0.005-0.035, -0.0005; (c) Phase 
position 80", Y = 0.01-0.04, -0-005; (d) Phase position Oo, Y = 0.01-0.08. 

From this theoretical study it may therefore be concluded that the secondary flow 
is of similar form over most of the alpha range until the boundary-layer-type region is 
reached. There is a gradual development of a reverse secondary flow which originates 
from the centre of the tube when a 2 10. 

Theoretical and experimental axial-velocity profiles for fully developed oscillatory 
flow in a curved pipe are now presented. The theoretical results were obtained using 
the Hankel transform solutions and the experimental results are presented for both 
&th and +th curvature pipes. The profiles were mainly measured in the plane of the 
bend at stations 90" round the +th curve and 180' round the &th curve from the 
inlet, where it was assumed that essentially fully developed conditions occurred. This 
point was investigated in detail experimentally and the results are presented in part 
1 (Mullin & Greated 1980) of this paper. 

The experimental velocity profiles presented were obtained a t  fixed phase positions 
in the pressure cycle using a sampling technique. The one shown in figure 10 was 
obtained in the quasi-steady region. The experimental measurement was made at  
0" phase position, a = 0-99 and peak D = 12 (where peak D = (2W0a/v) (a/R)*),  in 
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FIQURE 10. Comparison between experiment and theory in the quasi-steady flow region with 
D = 12, a / R  = 1/50, phase position O", a = 0.99. Crosses give experimental points and theoretical 
profile obtained using the results of the small-a approximation. 

the -5th curved tube. There is only a small departure from the Poiseuille flow dis- 
tribution and comparison between theory and experiment is found to be good. 

The effect of increasing a to 2.56 is illustratedin figure 1 1, where comparison between 
theory and experiment is also made. (It should be noted here that all velocity profiles 
have been plotted irrespective of direction of the flow for convenience.) The experi- 
mental measurements were made in the tube of curvature &th and the peak D = 9-53. 
The experimental results are just outside the expected limits of the theory (see 
Mullin 1978 for details) but, as can be seen, the agreement is found to be good. At 
150' and 180" phase positions in the pressure cycle, the higher axial-velocity com- 
ponents feature towards the inside of the curve, whereas, a t  the 60" and 120" positions, 
the peak in the profile is found towards the outside of the curve, as in the quasi-steady 
case. 

A further increase in a to 4.36 gives the velocity profiles shown in figure 12. The 
higher axial-velocity components are now found nearer the inside of the curve for a 
greater portion of the cycle. These measurements were made in the +th curved tube 
and this is a possible explanation for the more marked dist,ortion in the experimental 
profiles. However, the agreement between theory and experiment is reasonable. 
Further experimental measurements were made in the &th curved tube at a slightly 
lower a value and agreement between theory and experiment is found to be good. 
These results, together with other experimental results mainly confirming the above 
findings, are contained in Mullin (1978). 

In order to gain further insight into the behaviour of the axial velocity over the 
transition region, non -dimensionalized velocity-time diagrams for two positions in the 
flow, viz. 0, l r  and @9r, are shown in figures 13 and 14, in the form axial-velocity per- 
turbation plus corresponding straight pipe axial-velocity component for a values 2, 
5, 7, and 10. 
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FIGURE 1 1 .  Comparison between theory and experiment for axial-velocity flow profiles measured 
in the plane of the bend with c( = 2.56, peak D = 9.53, a / R  = 1/50 and phase positions 6Oo-18O0. 
All profiles are plotted to the same scale. 

At a = 2 the effect of the C O S ~ T  term found in the quasi-steady approximation, is 
still dominant and the beginnings of the reversal of the direction of action of the 
perturbation can be seen. Between a = 2 and 5 ,  a phase lag deveIops across the 
straight-pipe flow, while the perturbations remain in phase with each other. Also the 
phase lag between the perturbations and the applied pressure gradient develops 
rapidly and approaches a factor of two times the corresponding phase lag between 
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FIGURE 12. Velocity profiles for phase positions 0'-150" with a = 4.36, peak D = 9.98 and 
a / R  = t. Theoretical profile derived using equations (3.1 1 )  and (3.1).  

the straight-pipe component and the pressure gradient. Thus the perturbation acts 
almost in anti-phase with the main flow a t  a = 5 .  

Above a = 5 the phase difference across the straight pipe remains fixed but now 
the perturbations move out of phase with each other. The perturbation a t  the wall 
remains in anti-phase with the main flow but the one in the centre of the tube moves 
back into phase with the main flow. Thus for large values of a the axial velocity 
distribution will be such that the higher axial-velocity component will feature towards 
the inside of the curve a t  all phase positions close to the wall. 

The main conclusions of this study are that the general structure of the secondary 
flow in the limits a -+ 0 and a -+ 00 is similar to that found in previous theoretical and 
experimental studies. The transition region from the quasi-steady to the large-a state 
may be thought of as a gradual development of a stagnation region in the centre of 
the tube, as the centrifugally generated secondary flow, associated with the viscous 
flow, is confined to regions near the wall with increasing a. Eventually, where a 
becomes large, inward centrifuging occurs in the central flow region. 

The effect of the secondary flow on the axial flow is to cause the axial-velocity profile 
peak to be displaced towards the outside of the curve in the quasi-steady region and 
to the inside of the curve in the large-a region. It therefore seems plausible that in the 
transition stage between these two states both effects will be found. However, it 
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a 

FIGURE 13. Normalized velocity-time diagrams for straight-pipe flow (-), and fit-order 
perturbation due to curvature (---) for radial positions 0 . 1 ~  and 0 . 9 ~  for (a) a = 2 and (b) a = 5. 
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FIGURE 14. Normalized velocity-time diagrams for straight-pipe flow (-) and first-order 
perturbation due to curvature (---) for radial positions 0.1r and 0.9r for ( a )  a = 7 and (b )  a = 10. 

would appear that  the accepted physical model used to  explain the interaction 
between the secondary flow and the axial velocity is not sufficient to explain the 
effects found in this study in the transition stage where outward-flowing secondary 
flow in the centre of the tube is accompanied by the maximum of the axial-velocity 
distribution positioned a t  the inside of the bend. 

T. Mullin acknowledges the support of the S.R.C. during the period of this research. 
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